Multiple positive solutions for biharmonic equation of Kirchhoff type involving concave-convex nonlinearities
Fengjuan Meng,
Fubao Zhang,
Yuanyuan Zhang
Abstract:In this article, we study the multiplicity of positive solutions for the biharmonic equation of Kirchhoff type involving concave-convex nonlinearities, $$ \Delta^2u-\Big(a+b\int_{\mathbb{R}^N}|\nabla u|^2dx\Big)\Delta u+V(x)u =\lambda f_1(x)|u|^{q-2}u+f_2(x)|u|^{p-2}u. $$ Using the Nehari manifold, Ekeland variational principle, and the theory of Lagrange multipliers, we prove that there are at least two positive solutions, one of which is a positive ground state solution.
For more information see https:… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.