In this paper, we study the following nonlinear fractional Laplacian system with critical Sobolev‐Hardy exponent
false(−normalΔfalse)su−γufalse|xfalse|2s=λffalse(xfalse)false|ufalse|q−2ufalse|xfalse|α+2ηη+θhfalse(xfalse)false|ufalse|η−2ufalse|vfalse|θfalse|xfalse|β1emin0.3em0.3em0.3emnormalΩ,false(−normalΔfalse)sv−γvfalse|xfalse|2s=μgfalse(xfalse)false|vfalse|q−2vfalse|xfalse|α+2θη+θhfalse(xfalse)false|ufalse|ηfalse|vfalse|θ−2vfalse|xfalse|β1emin0.3em0.3em0.3emnormalΩ,u=v=01emin0.3em0.3em0.3emdouble-struckRN∖normalΩ,
where
0∈normalΩ is a smooth bounded domain in
double-struckRN,
01 satisfy
η+θ=2s*false(βfalse),
2s*false(βfalse)=2false(N−βfalse)N−2s is the critical Sobolev‐Hardy exponent,
λ,
μ>0 are parameters,
f,
g and
h are nonnegative functions on
normalΩ. Using the variational methods and analytic techniques, we prove that the critical fractional Laplacian system admits at least two positive solutions when the pair of parameters
false(λ,μfalse) belongs to a suitable subset of
double-struckR+2.