Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, e.g. in chemistry, medicine, materials science and mining. Nuclear spins also featured in early ideas [1] and demonstrations [2] of quantum information processing. Scaling up these ideas requires controlling individual nuclei, which can be detected when coupled to an electron [3, 4, 5]. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multispin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods [6, 7, 8] relied upon transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects the nuclear coherence. Here we demonstrate the coherent quantum control of a single antimony (spin-7/2) nucleus, using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea first proposed in 1961 [9] but never realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction, in the presence of lat- † To whom correspondence should be addressed;