This paper presents a super-twisting-based sliding mode control method for the formation problem of multi-robot systems. The multiple robots contain plenty of uncertainties and disturbances. Such a control method has two adaptive gains that can contribute to the robustness and improve the response of the formation maneuvers despite these uncertainties and disturbances. Based on the leader-follower frame, this control method was investigated. The closed-loop formation stability is theoretically guaranteed in the sense of Lyapunov. From the aspect of practice, the control method was carried out by a multi-robot system to achieve some desired formation patterns. Some numerical results were demonstrated to verify the feasibility of the control method. Some comparisons were also illustrated to support the superiority and effectiveness of the presented sliding mode control method.