In this work, we consider a family of nonlinear third-order evolution equations, where two arbitrary functions depending on the dependent variable appear. Evolution equations of this type model several real-world phenomena, such as diffusion, convection, or dispersion processes, only to cite a few. By using the multiplier method, we compute conservation laws. Looking for traveling waves solutions, all the the conservation laws that are invariant under translation symmetries are directly obtained. Moreover, each of them will be inherited by the corresponding traveling wave ODEs, and a set of first integrals are obtained, allowing to reduce the nonlinear third-order evolution equations under consideration into a first-order autonomous equation.