Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The conventional gravel pack sand control completion (High Rate Water Pack / Extension Pack) was the primary sand control method for PTTEPI, Myanmar Zawtika field since 2014 for more than 80 wells. Although the completion cost of gravel pack sand control was dramatically reduced around 75 percent due to the operation performance improvement along 5 years, the further cost reduction still mandatory to make the future development phase feasible. In order to tackle the well economy challenge, several alternative sand control completion designs were reviewed with the existing Zawtika subsurface information. The Chemical Sand Consolidation (CSC) or resin which is cost-effective method to control the sand production with injected chemicals is selected to be tested in 3 candidate wells. Therefore, the first trial campaign of CSC was performed with the Coiled Tubing Unit (CTU) in March to May 2019 with positive campaign results. The operation program and lesson learned were captured in this paper for future improvement in term of well candidate selection, operation planning and execution. The three monobore completion wells were treated with the CSC. The results positively showed that the higher sand-free rates can be achieved. The operation steps consist of 1) Perform sand cleanout to existing perforation interval or perforate the new formation interval. 2) Pumping pre-flush chemical to conditioning the formation to accept the resin 3) Pumping resin to coating on formation grain sand 4) Pumping the post-flush chemical to remove an excess resin from sand 5) Shut in the well to wait for resin curing before open back to production. However, throughout the campaign, there were several lessons learned, which will be required for future cost and time optimization. In operational view, the proper candidate selection shall avoid operational difficulties e.g. available rathole. As well, detailed operation plan and job design will result in effective CSC jobs. For instance, the coil tubing packer is suggested for better resin placement in the formation. Moreover, accommodation arrangement (either barge or additional vessel) and logistics management still have room for improvement. These 3 wells are the evidences of the successful applications in Zawtika field. With good planning, lesson learned and further optimization, this CSC method can be beneficial for existing monobore wells, which required sand control and also will be the alternative sand control method for upcoming development phases. This CSC will be able to increase project economic and also unlock the marginal reservoirs those will not justify the higher cost of conventional gravel pack.
The conventional gravel pack sand control completion (High Rate Water Pack / Extension Pack) was the primary sand control method for PTTEPI, Myanmar Zawtika field since 2014 for more than 80 wells. Although the completion cost of gravel pack sand control was dramatically reduced around 75 percent due to the operation performance improvement along 5 years, the further cost reduction still mandatory to make the future development phase feasible. In order to tackle the well economy challenge, several alternative sand control completion designs were reviewed with the existing Zawtika subsurface information. The Chemical Sand Consolidation (CSC) or resin which is cost-effective method to control the sand production with injected chemicals is selected to be tested in 3 candidate wells. Therefore, the first trial campaign of CSC was performed with the Coiled Tubing Unit (CTU) in March to May 2019 with positive campaign results. The operation program and lesson learned were captured in this paper for future improvement in term of well candidate selection, operation planning and execution. The three monobore completion wells were treated with the CSC. The results positively showed that the higher sand-free rates can be achieved. The operation steps consist of 1) Perform sand cleanout to existing perforation interval or perforate the new formation interval. 2) Pumping pre-flush chemical to conditioning the formation to accept the resin 3) Pumping resin to coating on formation grain sand 4) Pumping the post-flush chemical to remove an excess resin from sand 5) Shut in the well to wait for resin curing before open back to production. However, throughout the campaign, there were several lessons learned, which will be required for future cost and time optimization. In operational view, the proper candidate selection shall avoid operational difficulties e.g. available rathole. As well, detailed operation plan and job design will result in effective CSC jobs. For instance, the coil tubing packer is suggested for better resin placement in the formation. Moreover, accommodation arrangement (either barge or additional vessel) and logistics management still have room for improvement. These 3 wells are the evidences of the successful applications in Zawtika field. With good planning, lesson learned and further optimization, this CSC method can be beneficial for existing monobore wells, which required sand control and also will be the alternative sand control method for upcoming development phases. This CSC will be able to increase project economic and also unlock the marginal reservoirs those will not justify the higher cost of conventional gravel pack.
Sand control poses huge financial loses during production operations particularly in mature fields. It hinders economic oil production rates as well as damages downhole and surface equipment due to its abrasive action. Excessive sand production rates can plug the wellhead, flow lines, and separators which can result in detrimental well control situations. This paper will provide a comparative study on various sand control mechanisms by reviewing the latest advancements in sand management techniques. This study evaluates the performance of through-tubing sand screens, internal gravel pack, cased hole expandable sand screen, modular gravel pack system, openhole standalone screen, multi-zone single trip gravel pack, slim gravel pack, and chemical sand consolidation mechanisms. Various field examples from Niger-Delta, Mahakam oil and gas block, and offshore Malaysia are examined to gain an insight about the application of aforementioned sand control methods for different type of reservoirs. This study enables the operator to tackle the sand production problem according to the well construction changes during the life cycle of a well. The internal gravel pack completion system delivers a prolonged plateau production regime in shallow depths. In high drawdown conditions, chemical sand consolidation completion incurs early water breakthrough and elevated sand production. Chemical sand consolidation technique yields better results in deeper formations and its placement can be improvised by implementing coiled tubing and diversion techniques for multi-stage treatments. Depending on the well inclination, gas-water contact, producing zone type and thickness, well age, and economy, the completion types out of modular gravel pack, openhole standalone screen, slim gravel pack, and through tubing sand screen is recommended accordingly. Acquiring offset data, well log analysis, particle size distribution and performing pressure tests will improve the data quality of the obtained reservoir properties. This will further help in the selection of the most suitable sand control method for the target reservoir.
Tunu is one of Mahakam fields with majority gas production. The depositional nature of fluvial with minimum tidal influence results in the signature of delta sedimentation by hundred layers of gas-bearing sand lenses as pay zone. They are constructed of unconsolidated clean and shaly sand reservoirs at the shallower burial and higher consolidation at deeper burial due to compaction and diagenesis. The unconsolidated section requires sand control as mandatory means to unlock it safely. The combined challenge of numerous sand layers and marginal reserves makes it economically impossible to perform regular detailed physical sand grain assessment by individual conventional coring completed with Laser Particle Sieve Analysis (LPSA). An economic approach is through performing sand bailing. However, the bailed sand dry-sieve results were confusing with wide particle size distribution (PSD) curve variation from several well samples. Referring to this PSD uncertainty, installing straddled thru-tubing screen in front of the reservoir as sand control resulted in good production and plugged indication at the beginning of the initiative by utilizing a similar screen opening size. Thus, a new fit-for-purpose methodology was required. A study to predict sand grain size on each reservoir target was initiated by analyzing three available shallow reservoir cores in Mahakam, which could cover most of Tunu's shallow sedimentation type. The result was that most of the sand grain size distribution on each sample core correlated with their calculated shale volume content (v-shale). Lower v-shale is respected to larger sand grain size. Unconsolidated Tunu Shallow reservoir doesn't contain any specific radioactive minerals. Thus, v-shale could be easily calculated from gamma-ray logs, which are always available on each reservoir target at any drilled wells. The relationship between sand grain size and v-shale was gathered on a single map. The map was then validated by historical screen installation. Positive results were seen when screen size selection respects specific patterns on the generated sand map at the v-shale value of perforation intervals. Thru-tubing screen installation campaign was continued following the new sand map reference. It could deliver more than 80% successful installation with no plugging or sand at a new perforated reservoir when no screen integrity issue due to erosion was encountered. This novel approach allowed better prediction of thru-tubing screen opening size requirements and perforation interval selection in Tunu unconsolidated reservoir and was successfully expanded in offshore Mahakam field at similar facies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.