2022
DOI: 10.3390/s22207856
|View full text |Cite
|
Sign up to set email alerts
|

Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities

Abstract: Multiple Sclerosis (MS) is a disease that impacts the central nervous system (CNS), which can lead to brain, spinal cord, and optic nerve problems. A total of 2.8 million are estimated to suffer from MS. Globally, a new case of MS is reported every five minutes. In this review, we discuss the proposed approaches to diagnosing MS using machine learning (ML) published between 2011 and 2022. Numerous models have been developed using different types of data, including magnetic resonance imaging (MRI) and clinical … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
12
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 43 publications
(23 citation statements)
references
References 111 publications
2
12
0
3
Order By: Relevance
“…The different ways of quantifying the layer thicknesses have been used as feature sets for building machine learning systems toward the computer-aided diagnosis of MS. The comprehensive review recently provided by Aslam et al in [2] describes the advances in the performance of these methods and discusses some limitations.…”
Section: Machine Learning In the Diagnosis Of Ms Usable Solutionsmentioning
confidence: 99%
See 1 more Smart Citation
“…The different ways of quantifying the layer thicknesses have been used as feature sets for building machine learning systems toward the computer-aided diagnosis of MS. The comprehensive review recently provided by Aslam et al in [2] describes the advances in the performance of these methods and discusses some limitations.…”
Section: Machine Learning In the Diagnosis Of Ms Usable Solutionsmentioning
confidence: 99%
“…The major criticism from Aslam et al in [2] is that these studies have been conducted with a very small number of samples. Consequently, the models may not be robust presenting a high variance.…”
Section: Machine Learning In the Diagnosis Of Ms Usable Solutionsmentioning
confidence: 99%
“…In der Neuroimmunologie wird die intelligente Analyse der (MRT-)Bildgebung, analog zur Neuroonkologie zur Diagnosefindung sowie Therapieansprechen vor allem bei Multipler Sklerose (MS) genutzt 54 . Seltenere Erkrankungen aus dem Bereich der Neuroimmunologie spielen in der KI-Forschung kaum eine Rolle.…”
Section: Künstliche Intelligenz In Teilgebieten Der Neurologieunclassified
“…Zum möglichst großen Informationsgewinn und zur Optimierung der Therapie werden nicht nur MRT-Daten analysiert, sondern auch nuklearmedizinische bildgebende Verfahren, molekulare Maker oder DNA-Methylisierungsmethoden[51,52]. All diese Ansätze dienen der Verbesserung der Standarisierung und Klassifizierung von ZNS-Tumoren sowie der Personalisierung der Therapie[53].NeuroimmunologieIn der Neuroimmunologie wird die intelligente Analyse der (MRT-) Bildgebung, analog zur Neuroonkologie zur Diagnosefindung sowie Therapieansprechen vor allem bei Multipler Sklerose (MS) genutzt[54]. Seltenere Erkrankungen aus dem Bereich der Neuroimmunologie spielen in der KI-Forschung kaum eine Rolle.…”
unclassified
“…The first signs in patients with late-onset MS are usually movement disorders with predominating lower-limb paraparesis (in more than 50% of patients), often with a significant increase in muscle tone. Some publications indicate a higher frequency of the primary-progressive course in the case of a late debut [8,9].…”
Section: Introduction / вступmentioning
confidence: 99%