Leptospirosis is a re-emerging infectious disease that presents a diagnostic enigma for clinicians with frequent misdiagnosis due to lack of rapid and accurate diagnostic tests, as the current methods are encumbered by inherent limitations. The development of a diagnostic sensor with a sample-inresult-out capability is pivotal for prompt diagnosis. Herein, we developed a microfluidic paper-based analytical device (spin-μPAD) featuring a sample-inresult-out fashion for the detection of Leptospira specific urinary biomarker, sph2 sphingomyelinase, crucial for noninvasive point-of-care testing. Fabrication of paper devices involved precise photolithography techniques, ensuring a high degree of reproducibility and replicability. By optimizing the device's configuration and protein components, a remarkable sensitivity and specificity was achieved for detecting leptospiral sph2 in urine, even at low concentrations down to 1.5 fg/mL, with an assay time of 15 min. Further, the spin-μPAD was validated with 20 clinical samples, suspected of leptospirosis including other febrile illnesses, and compared with gold standard microscopic agglutination test, culture, Lepto IgM ELISA, darkfield microscopy, and Leptocheck WB spot test. In contrast to commercial diagnostic tools, the spin-μPAD was noninvasive, rapid, easy to use, specific, sensitive, and cost-effective. The results highlight the potential of this innovative spin-μPAD for an efficient and dependable approach to noninvasive leptospirosis diagnosis, addressing critical needs in the realms of public health and clinical settings.