This paper is devoted to introduce a new approach to investigate the existence of solutions for a three-point boundary value problem of fractional difference equations as fllows: Δ ] () = (+ ] − 1, (+ ] − 1), Δ (+ ] − 2)), (] − 2) = 0, and [Δ ()] =]+ − +1 = [Δ ()] =]+ −. We present an existence result at resonance case. The proof relies on coincidence degree theory.