Accurate target detection is the basis of normal driving for intelligent vehicles. However, the sensors currently used for target detection have types of defects at the perception level, which can be compensated by sensor fusion technology. In this paper, the application of sensor fusion technology in intelligent vehicle target detection is studied with a millimeter-wave (MMW) radar and a camera. The target level fusion hierarchy is adopted, and the fusion algorithm is divided into two tracking processing modules and one fusion center module based on the distributed structure. The measurement information output by two sensors enters the tracking processing module, and after processing by a multi-target tracking algorithm, the local tracks are generated and transmitted to the fusion center module. In the fusion center module, a two-level association structure is designed based on regional collision association and weighted track association. The association between two sensors’ local tracks is completed, and a non-reset federated filter is used to estimate the state of the fusion tracks. The experimental results indicate that the proposed algorithm can complete a tracks association between the MMW radar and camera, and the fusion track state estimation method has an excellent performance.