In recent years, foodborne disease outbreaks have caused huge losses to the economy and have had severe impacts on public health. The accuracy and variety of detection techniques is crucial to controlling the outbreak and spread of foodborne diseases. The need for instruments increases the difficulty of field detection, while manually-handled samples are subject to user error and subjective interpretation. Here, we use a mini automatic nucleic acid extractor combined with recombinant polymerase amplification (RPA) and lateral flow immunoassay (LFIA) for simultaneous quantitative detection of five major foodborne pathogens. The pre-treatment device using the magnetic bead method allows for nucleic acid extraction of the reagent tank without manual operation, which is highly efficient and stable for preventing aerosol contamination. The nuc gene of Staphylococcus aureus, the toxR gene of Vibrio parahaemolyticus, the rfbE gene of Escherichia coli O157:H7, the hlyA gene of Listeria monocytogenes, and the fimY gene of Salmonella enterica were used as target fragments. The labeled antibody concentration is optimized on the LFIA to find the equilibrium point for the binding capacity of the five chemical markers and to efficiently and accurately visualize the bands. The RPA assay shows an optimal performance at 37 °C for 15 min. The optimized RPA-LFIA detection limit can reach 101 CFU/mL. There was no cross-reactivity among forty-eight strains. Furthermore, the average recoveries in spiked food samples were 90.5–104.5%. In summary, the RPA-LFIA established in this study can detect five pathogenic bacteria simultaneously with little dependence on laboratory equipment, and it has promising prospects for screening in low-resource areas.