Direct polymerase chain reaction (PCR) detection of insertion/deletion (indel) polymorphisms requires sample homozygosity. For the indel polymorphisms that have the deletion allele with a relatively low frequency in the autosomal regions, direct PCR detection becomes difficult or impossible. The present study is, to our knowledge, the first designed to directly detect indel polymorphisms in a human autosomal region (i.e., the immunoglobulin V(H) region), through use of single haploid sperm cells as subjects. Unique marker sequences (n=32), spaced at approximately 5-kb intervals, were selected near the 3' end of the V(H) region. A two-round multiplex PCR protocol was used to amplify these sequences from single sperm samples from nine unrelated healthy donors. The parental haplotypes of the donors were determined by examining the presence or absence of these markers. Seven clustered markers in 6 of the 18 haplotypes were missing and likely represented a 35-40-kb indel polymorphism. The genotypes of the donors, with respect to this polymorphism, perfectly matched the expectation under Hardy-Weinberg equilibrium. Three V(H) gene segments, of which two are functional, are affected by this polymorphism. According to these results, >10% of individuals in the human population may not have these gene segments in their genome, and approximately 44% may have only one copy of these gene segments. The biological impact of this polymorphism would be very interesting to study. The approach used in the present study could be applied to understand the physical structure and diversity of all other autosomal regions.