SummaryGenome editing has transformed biomedical science, but is still unpredictable and often induces undesired outcomes. Prime editing (PE) is a promising new approach due to its proposed flexibility and ability to avoid unwanted indels. Here, we show highly efficient PE-mediated genome editing in mammalian zygotes. Utilizing chemically modified guideRNAs, PE efficiently introduced 10 targeted modifications including substitutions, deletions, and insertions across 6 genes in mouse embryos. However, we unexpectedly observed a high frequency of undesired outcomes such as large deletions and found that these occurred more often than pure intended edits across all of the edits/genes. We show that undesired outcomes result from the double-nicking PE3 strategy, but that omission of the second nick largely ablates PE function. However, sequential double-nicking with PE3b, which is only applicable to a fraction of edits, eliminated undesired outcomes. Overall, our findings demonstrate the promising potential of PE for predictable, flexible, and highly efficient in vivo genome editing, but highlight the need for improved variations of PE before it is ready for widespread use.