The symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and its exclusive light-organ symbiont, Vibrio fischeri, provides a natural system in which to study host-microbe specificity and gene regulation during the establishment of a mutually-beneficial symbiosis. Colonization of the host relies on bacterial biofilm-like aggregation in the squid mucus field. Symbiotic biofilm formation is controlled by a two-component signaling (TCS) system consisting of regulators RscS-SypF-SypG, which together direct transcription of the Syp symbiotic polysaccharide. TCS systems are broadly important for bacteria to sense environmental cues and then direct changes in behavior. Previously, we identified hybrid histidine kinase BinK as a strong negative regulator of Vibrio fischeri biofilm regulation, and here we further explore the function of BinK. To inhibit biofilm formation, BinK requires the predicted phosphorylation sites in both the histidine kinase (H362) and receiver (D794) domains. Furthermore, we show that a strain lacking BinK yields RscS non-essential for host colonization, and imaging of aggregate size revealed no benefit to the presence of RscS in a background lacking BinK. Strains lacking RscS still suffered in competition, suggesting another function for the protein. Finally, we show that BinK functions to inhibit biofilm gene expression in the light organ crypts, providing evidence for biofilm gene regulation at later stages of host colonization. Overall, this study provides direct evidence for opposing activities of RscS and BinK and yields novel insights into biofilm regulation during the maturation of a beneficial symbiosis.