2011
DOI: 10.1007/s00009-011-0157-1
|View full text |Cite
|
Sign up to set email alerts
|

Multiplication Operators on the Iterated Logarithmic Lipschitz Spaces of a Tree

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
19
0

Year Published

2013
2013
2023
2023

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 24 publications
(19 citation statements)
references
References 9 publications
0
19
0
Order By: Relevance
“…In particular, infinite trees can be seen as the natural discretizations of the hyperbolic disk. Much more information about these topics can be found in the papers [1,2,3,4,9,10,11,19]. We should mention that the paper [19] studies hypercyclicity for composition operators defined on the boundary of nondirected trees.…”
Section: Introductionmentioning
confidence: 99%
“…In particular, infinite trees can be seen as the natural discretizations of the hyperbolic disk. Much more information about these topics can be found in the papers [1,2,3,4,9,10,11,19]. We should mention that the paper [19] studies hypercyclicity for composition operators defined on the boundary of nondirected trees.…”
Section: Introductionmentioning
confidence: 99%
“…Colonna multiplication operators on Lipschitz space, weighted Lipschitz space, and iterated logarithmic Lipschitz space of a tree in [10], [4] and [3], respectively. In [2,11], the authors discussed about multiplication operators between Lipschitz type spaces and the space of bounded functions on a tree.…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, the number of vertices in D n 1 which are mapped into D k is strictly less than c k N k,n 1 . Then by (2), the total number of elements in D n 1 is strictly less than…”
Section: Isometrymentioning
confidence: 99%
“…The basic questions such as boundedness, compactness, estimates for operator norm and essential norm, isometry and spectrum were considered for multiplication operators between various discrete function spaces on infinite tree such as Lipschitz space, weighted Lipschitz space and iterated logarithmic Lipschitz spaces. See [1,2,3,5,9,10] for more details.…”
Section: Introductionmentioning
confidence: 99%