We consider the elliptic problem Delta u + u(p) = 0, u > 0 in an exterior domain, Omega = R-N\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in R-N, N >= 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(vertical bar x vertical bar(-2/p-1)) at infinity. In addition, a solution with fast decay O(vertical bar x vertical bar(2- N)) exists if p is close enough from above to the critical exponent