In this paper, we prove the multiplicity of nontrivial solutions for a class of fractional-order elliptic equation with magnetic field. Under appropriate assumptions, firstly, we prove that the system has at least two different solutions by applying the mountain pass theorem and Ekeland’s variational principle. Secondly, we prove that these two solutions converge to the two solutions of the limit problem. Finally, we prove the existence of infinitely many solutions for the system and its limit problems, respectively.