A comparison of the molecular structures of mono-, di- and tetraborylated ferrocenes [Fc{B(R(1))(R(2))}] (R(1)/R(2)=Br/Br, Br/Fc, Br/Me, Me/Me, Me/OH, OMe/OMe), 1,1'-[fc{B(R(1))(R(2))}(2)] (R(1)/R(2)=Br/Br, Br/Me, OMe/OMe), and 1,1',3,3'-[Fe{C(5)H(3)(BMe(2))(2)}(2)] revealed the boryl substituent(s) to be bent out of the Cp ring plane towards the iron center. The corresponding dip angle alpha* decreases with decreasing Lewis acidity of the boron atom and with increasing degree of borylation at the ferrocene core. This trend is well reproduced by DFT calculations (including [FcBH(2)], not yet accessible experimentally). A Bader analysis of the electron density topology of [FcBH(2)] (alpha*=26.5 degrees ; BP86/TZVP) clearly showed that there is no direct iron-boron bonding in this compound. Instead, strongly delocalized orbital interactions have been identified that involve the boron p orbital, C(ipso) of the adjacent Cp ring, d orbitals at iron, and a through-space interaction with the second Cp ring. A second important factor is attractive electrostatic interactions, which are enhanced upon ligand bending. Cyclic voltammetric measurements on the series [FcBMe(2)], 1,1'-[fc(BMe(2))(2)], and 1,1',3,3'-[Fe{C(5)H(3)(BMe(2))(2)}(2)] indicate a substantial anodic shift in the oxidation potential of the central iron atom upon introduction of BMe(2) substituents. Addition of 4-dimethylaminopyridine (DMAP) does not just counterbalance this effect, but leads to a cathodic shift of the Fe(II)/Fe(III) redox transition far beyond the half-wave potential of parent ferrocene. In the Mossbauer spectra, a continuous decrease in the quadrupole splitting (QS) is observed upon going from parent ferrocene to [FcBMe(2)], to 1,1'-[fc(BMe(2))(2)], and to 1,1',3,3'-[Fe{C(5)H(3)(BMe(2))(2)}(2)]. In contrast, no significant differences are found between the QS values of ferrocene, [Fc(BMe(2)-DMAP)], and 1,1'-[fc(BMe(2)-DMAP)(2)].