Recent advances in optical systems make them ideal for undersampling multiband signals that have high bandwidths. In this paper we propose a new scheme for reconstructing multiband sparse signals using a small number of sampling channels. The scheme, which we call synchronous multirate sampling (SMRS), entails gathering samples synchronously at few different rates whose sum is significantly lower than the Nyquist sampling rate. The signals are reconstructed by solving a system of linear equations. We have demonstrated an accurate and robust reconstruction of signals using a small number of sampling channels that operate at relatively high rates. Sampling at higher rates increases the signal to noise ratio in samples. The SMRS scheme enables a significant reduction in the number of channels required when the sampling rate increases. We have demonstrated, using only three sampling channels, an accurate sampling and reconstruction of 4 real signals (8 bands). The matrices that are used to reconstruct the signals in the SMRS scheme also have low condition numbers. This indicates that the SMRS scheme is robust to noise in signals. The success of the SMRS scheme relies on the assumption that the sampled signals are sparse. As a result most of the sampled spectrum may be unaliased in at least one of the sampling channels. This is in contrast to multicoset sampling schemes in which an alias in one channel is equivalent to an alias in all channels. We have demonstrated that the SMRS scheme obtains similar performance using 3 sampling channels and a total sampling rate 8 times the Landau rate to an implementation of a multicoset sampling scheme that uses 6 sampling channels with a total sampling rate of 13 times the Landau rate.