Hypoxia and the pH level of the tumor microenvironment have a great impact on the treatment of tumors. Here, the tumor growth is controlled by regulating the oxygen concentration and the acidity of the tumor microenvironment by introducing a two-dimensional multiscale cellular automata model of avascular tumor growth. The spatiotemporal evolution of tumor growth and metabolic variations is modeled based on biological assumptions, physical structure, states of cells, and transition rules. Each cell is allocated to one of the following states: proliferating cancer, nonproliferating cancer, necrotic, and normal cells. According to the response of the microenvironmental conditions, each cell consumes/produces metabolic factors and updates its state based on some stochastic rules. The input parameters are compatible with cancer biology using experimental data. The effect of neighborhoods during mitosis and simulating spatial heterogeneity is studied by considering multicellular layer structure of tumor. A simple Darwinist mutation is considered by introducing a critical parameter (
Nmm
) that affects division probability of the proliferative tumor cells based on the microenvironmental conditions and cancer hallmarks. The results show that
Nmm
regulation has a significant influence on the dynamics of tumor growth, the growth fraction, necrotic fraction, and the concentration levels of the metabolic factors. The model not only is able to simulate the in vivo tumor growth quantitatively and qualitatively but also can simulate the concentration of metabolic factors, oxygen, and acidity graphically. The results show the spatial heterogeneity effects on the proliferation of cancer cells and the rest of the system. By increasing
Nmm
, tumor shrinkage and significant increasing in the oxygen concentration and the pH value of the tumor microenvironment are observed. The results demonstrate the model’s ability, providing an essential tool for simulating different tumor evolution scenarios of a patient and reliable prediction of spatiotemporal progression of tumors for utilizing in personalized therapy.