Abstract. Due to the enormous difference in the scales involved in correlating the macroscopic properties with the micro-and nano-physical mechanisms of carbon nanotube-reinforced composites, multiscale mechanics analysis is of considerable interest. A hybrid atomistic/continuum mechanics method is established in the present paper to study the deformation and fracture behaviors of carbon nanotubes (CNTs) in composites. The unit cell containing a CNT embedded in a matrix is divided in three regions, which are simulated by the atomic-potential method, the continuum method based on the modified Cauchy-Born rule, and the classical continuum mechanics, respectively. The effect of CNT interaction is taken into account via the Mori-Tanaka effective field method of micromechanics. This method not only can predict the formation of Stone-Wales (5-7-7-5) defects, but also simulate the subsequent deformation and fracture process of CNTs. It is found that the critical strain of defect nucleation in a CNT is sensitive to its chiral angle but not to its diameter. The critical strain of Stone-Wales defect formation of zigzag CNTs is nearly twice that of armchair CNTs. Due to the constraint effect of matrix, the CNTs embedded in a composite are easier to fracture in comparison with those not embedded. With the increase in the Young's modulus of the matrix, the critical breaking strain of CNTs decreases.