Objective: Schizophrenia is associated with widespread brain-morphological alterations, believed to be shaped by the underlying connectome architecture. This study tests whether large-scale structural reorganization in schizophrenia relates to normative network architecture, in particular regional centrality/hubness and connectivity patterns. We examine network effects in schizophrenia across different disease stages, and transdiagnostically explore consistency of such relationships in patients with bipolar and major depressive disorder. Methods: We studied anatomical MRI scans from 2,439 adults with schizophrenia and 2,867 healthy controls from 26 ENIGMA sites. Case-control patterns of structural alterations were evaluated against two network susceptibility models: 1) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; 2) epicenter models, which identify regions whose typical connectivity profile most closely resembles the disease-related morphological alteration patterns. Both susceptibility models were tested across schizophrenia disease stages and compared to meta-analytic bipolar and major depressive disorder case-control maps. Results: In schizophrenia, regional gray matter reductions co-localized with interconnected hubs, in both the functional (r=0.58, pspin<0.0001) and structural connectome (r=0.32, pspin=0.01). Epicenters were identified in temporo-paralimbic regions, extending to frontal areas. We found unique epicenters for first-episode and early stages, and a shift from occipital to temporal-frontal epicenters in chronic stages. Transdiagnostic comparisons revealed shared epicenters in schizophrenia and bipolar, but not major depressive disorders. Conclusions: Cortical reorganization over the course of schizophrenia closely reflects brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters. The observed overlapping epicenters for schizophrenia and bipolar disorder furthermore suggest shared pathophysiological processes within the schizophrenia-bipolar-spectrum.