The way users intectact with smartphones is changing after the improvements made in their embedded sensors. Increasingly, these devices are being employed as tools to observe individuals habits. Smartphones provide a great set of embedded sensors, such as accelerometer, digital compass, gyroscope, GPS, microphone, and camera. This paper aims to describe a distributed architecture, called inContexto, to recognize user context information using mobile phones. Moreover, it aims to infer physical actions performed by users such as walking, running, and still. Sensory data is collected by HTC magic application made in Android OS, and it was tested achieving about 97% of accuracy classifying five different actions (still, walking and running).