2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery 2010
DOI: 10.1109/fskd.2010.5569466
|View full text |Cite
|
Sign up to set email alerts
|

Multisensor image fusion using fuzzy logic for surveillance systems

Abstract: Multisensor image fusion has its effective utilization for surveillance. In this paper, we utilize a fuzzy logic approach to fuse images from different sensors, in order to enhance visualization for surveillance. With the help of fuzzy if-then rules and membership functions designed for the image data set, the fuzzy logic approach can model and combine the images to enhance the contrast of the fused image. Mamdani-type fuzzy inference system is used to combine the images. Subjective and objective image fusion … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
10
0
1

Year Published

2012
2012
2018
2018

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 12 publications
(11 citation statements)
references
References 26 publications
0
10
0
1
Order By: Relevance
“…Если объекты корректно распознаны со всех источников изображений, то происходит их слияние для получения действительного представления сцены. Наиболее распространенными подходами слияния изображений на основе выделения объектов являются алгоритмы нечеткой логики [19], байесовская сеть [20] и алгоритмы машинного обучения [21].…”
Section: подходы к слиянию инфракрасных и видимых изображенийunclassified
“…Если объекты корректно распознаны со всех источников изображений, то происходит их слияние для получения действительного представления сцены. Наиболее распространенными подходами слияния изображений на основе выделения объектов являются алгоритмы нечеткой логики [19], байесовская сеть [20] и алгоритмы машинного обучения [21].…”
Section: подходы к слиянию инфракрасных и видимых изображенийunclassified
“…Region (feature) fusion rules group image pixels to form contiguous regions, for example, objects and impose different fusion rules to each image region. This type of fusion rule requires the extraction of different features from the source data before features are merged together, which can be attributed to the inefficiencies faced by pixel‐based algorithms in cases where the salient features in images are larger than one pixel [8, 9]. In general, pixel‐based fusion algorithms concentrate on increasing image contrast whereas region‐based algorithms provide edge enhancement.…”
Section: Introductionmentioning
confidence: 99%
“…Image fusion method has been utilized in pronounced domains: medical image processing, satellite image processing, computer vision, involuntary change recognition, biometrics and armed solicitations. Multi-device image combination for investigation schemes deliberated where fuzzy method exploited for fusing images taken from various sensors, in order to improve conception for observation [2]. The source images decomposition by wavelet transform three consistency structures are mined and then a fuzzy instruction is utilized to combine wavelet factors from the two images conferring to the mined structures.…”
Section: *Author For Correspondencementioning
confidence: 99%