2001
DOI: 10.1016/s0921-8890(00)00117-2
|View full text |Cite
|
Sign up to set email alerts
|

Multisensor on-the-fly localization:

Abstract: This paper presents an approach for localization using geometric features from a 360 • laser range finder and a monocular vision system. Its practicability under conditions of continuous localization during motion in real time (referred to as on-the-fly localization) is investigated in large-scale experiments. The features are infinite horizontal lines for the laser and vertical lines for the camera. They are extracted using physically well-grounded models for all sensors and passed to a Kalman filter for fusi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2006
2006
2014
2014

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 113 publications
(5 citation statements)
references
References 16 publications
0
3
0
2
Order By: Relevance
“…(1) Preprocess laser range finder data. It is divided into different continuous points set [12] by the adaptive method. The formula is used to judge two adjacent dots continuity as follows:…”
Section: Section Lines Feature Extraction and Matchmentioning
confidence: 99%
“…(1) Preprocess laser range finder data. It is divided into different continuous points set [12] by the adaptive method. The formula is used to judge two adjacent dots continuity as follows:…”
Section: Section Lines Feature Extraction and Matchmentioning
confidence: 99%
“…The first one is solved by applying the action sequence (E, N). The symmetry problems vanish for Example 12.2, which can also be solved by the sequence (E, N) because (1,2,3) is the only sequence of positions that is consistent with the actions and compass readings.…”
Section: Discrete Localizationmentioning
confidence: 99%
“…Combinatorial localization with very little sensing is presented in [134]. For further reading on probabilistic localization, see [3,37,76,78,83,85,93,108,109,135,155,166,167,187]. In [179,180], localization uncertainty is expressed in terms of a sensor-uncertainty field, which is a derived I-space.…”
Section: Further Readingmentioning
confidence: 99%
“…Como resultado, se han desarrollado diferentes métodos probabilísticos muy robustos, como por ejemplo técnicas de filtrado de Kalman [52,69] filtros de partículas [106], o algoritmos de esperanza-maximización [71], entre otros. A pesar de esta evolución tan considerable, los métodos que ofrecen una mayor fiabilidad están basados en datos sensoriales en bruto [20,105], o en características de bajo nivel, como líneas [7]. Esto es un claro indicador de que, a pesar de que existen técnicas muy avanzadas para realizar tareas de localización y construcción de mapas, los robots son todavía incapaces de extraer información simbólica del entorno con la misma facilidad y precisión que lo hacemos los humanos.…”
Section: Motivaciónunclassified
“…Un trabajo similar en el enfoque pero mucho más minucioso y detallado es el sistema Finale de Kosaka y Kak [58], que también confía en la transformada de Hough para la detección de líneas verticales, pero supone que existen modelos geométricos detallados en 3D del entorno. Arras y Tomatis [6,7] también utilizan un EKF para fusionar características verticales en imágenes monoculares con paredes detectadas con un escáner láser 2D.…”
Section: Líneas Verticalesunclassified