This article evaluates two essential non-destructive electromagnetic techniques, magnetic flux leakage (MFL) and eddy current (EC) methods, and their effectiveness in assessing the basic parameters of reinforced concrete (RC). The study compares both systems’ hardware and software components, emphasizing the adaptations implemented to tailor the methods for evaluating RC structures. Subsequently, the measurement results are analyzed, and association rules are extracted to demonstrate the relationships between variations in the physical parameters of the tested structure and the features of the measured waveforms. Finally, similar identification models are implemented, and the obtained identification results are compared. The paper documents and details all phases of this research. The findings indicate that while the operational principles of both methods are similar, the techniques differ significantly in terms of their measurement systems’ complexity and usability. The eddy current (EC) method exhibits superior spatial resolution, whereas the magnetic method is more straightforward and offers a greater effective range and favorable association rules. Consequently, it is recommended that both techniques be utilized for different structures and in varying contexts. The techniques’ advantages, disadvantages, and limitations are discussed in this work and supported by the measurement results.