2006
DOI: 10.1007/s10479-006-5304-2
|View full text |Cite
|
Sign up to set email alerts
|

Multiserver queue with addressed retrials

Abstract: This paper presents a multiserver retrial queueing system with servers kept apart, thereby rendering it impossible for one to know the status (idle/busy) of the others. Customers proceeding to one channel will have to go to orbit if the server in it is busy and retry after some time to some channel, not necessarily the one already tried. Each orbital customer, independently of others, chooses the server randomly according to some specified probability distribution. Further this distribution is identical for al… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
1

Year Published

2006
2006
2020
2020

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(7 citation statements)
references
References 15 publications
0
6
0
1
Order By: Relevance
“…Многолинейные системы с повторными вызовами, в которых серверы являются однородными, а вновь прибывающий запрос выбирает произвольный незанятый прибор с равной вероятностью и обращается к какому-то конкретному прибору, рассматривались, например, в работах [16,17].…”
Section: дополнительная информация оunclassified
“…Многолинейные системы с повторными вызовами, в которых серверы являются однородными, а вновь прибывающий запрос выбирает произвольный незанятый прибор с равной вероятностью и обращается к какому-то конкретному прибору, рассматривались, например, в работах [16,17].…”
Section: дополнительная информация оunclassified
“…Continuous time AQTMC were applied to investigate the queueing model BMAP/PH/N/0 in the case of complete admission discipline, see [24], the M/M/c retrial queue with controllable number of active servers, see [2], the M/M/c retrial queue with addressed retrials where the primary or repeated customer is addressed, in each attempt, to a concrete server, but not to a whole pool of servers, see [31].…”
Section: Algorithm For Calculating the Stationary Distributionmentioning
confidence: 99%
“…The service time distribution depends on the server selected and for rth server the distribution is exponential with the same parameter μ r both for primary and returning customers. This assumption is more general as compared with Mushko et al (2006) where it is assumed that μ r ≡ μ. Note that the model under consideration for the first time was studied in Mushko (2006).…”
Section: Introductionmentioning
confidence: 99%
“…When all probabilities θ r are positive, i.e. returning customers have access to any server, and μ r ≡ μ it is shown in Mushko et al (2006) that the process ζ(t) is ergodic if λ < cμ (as a matter of fact this inequality is also necessary for the ergodicity). The situation when some servers are reserved to process primary customers, i.e.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation