In behavioral and neurophysiological pain studies, multiple types of calibration methods are used to quantify the individual pain sensation stimuli. Often, studies lack a detailed calibration procedure description, data linearity, and quality quantification and omit required control for sex pain differences. This hampers study repetition and interexperimental comparisons. Moreover, typical calibration procedures require a high number of stimulations, which may cause discomfort and stimuli habituation among participants. To overcome those shortcomings, we present an automatic calibration procedure with a novel stimuli estimation method for intraepidermal stimulation. We provide an in‐depth data analysis of the collected self‐reports from 70 healthy volunteers (37 males) and propose a method based on a dynamic truncated linear regression model (tLRM). We compare its estimates for the sensation (t) and pain (T) thresholds and mid‐pain stimulation (MP), with those calculated using traditional estimation methods and standard linear regression models. Compared to the other methods, tLRM exhibits higher R2 and requires 36% fewer stimuli applications and has significantly higher t intensity and lower T and MP intensities. Regarding sex differences, t and T were found to be lower for females compared to males, regardless of the estimation method. The proposed tLRM method quantifies the calibration procedure quality, minimizes its duration and invasiveness, and provides validation of linearity between stimuli intensity and subjective scores, making it an enabling technique for further studies. Moreover, our results highlight the importance of control for sex in pain studies.