The spatial and temporal monitoring of soil organic carbon (SOC), and other soil properties related to soil erosion, is extremely important, both from the environmental and economic perspectives. Sentinel-2 (S2) and Landsat-8 (L8) time series increase the probability to observe bare soil fields in croplands, and thus, monitor soil properties over large regions. In this regard, this work suggests an automated pixel-based approach to select only pure soil pixels in S2 and L8 time series, and to make a synthetic bare soil image (SBSI). The SBSIs and the soil properties measured in the framework of the European LUCAS survey were used to calibrate SOC, clay, and CaCO3 prediction models. The results highlight a high correlation between laboratory soil spectra and the SBSIs median spectra, especially for the SBSI obtained by a three-year S2 collection, which provides satisfactory results in terms of SOC prediction accuracy (RPD: 1.74). The comparison between S2 and L8 results demonstrated the higher capability of the S2 sensor in terms of SOC prediction accuracy, mainly due to the greater spatial resolution of the bands in the visible region. Whereas, neither S2 nor L8 could accurately predict the clay and CaCO3 content. This is because of the low spectral and spatial resolution of their SWIR bands that prevent the exploitation of the narrow spectral features related to these two soil attributes. The results of this study prove that large S2 time series can estimate and monitor SOC in croplands using an automated pixel-based approach that selects pure soil pixels and retrieves reliable synthetic soil spectra.