A prototype three-frequency (114, 256, and 410 kHz) colour sidescan sonar system, built by Kongsberg Underwater Mapping Ltd. (Great Yarmouth, UK), was previously described, and preliminary results presented, in Tamsett, McIlvenny, and Watts. The prototype system has subsequently been modified, and in 2017, new data were acquired in a resurvey of the Inner Sound of the Pentland Firth, North Scotland. An image texture characterisation and image classification exercise demonstrates considerably greater discrimination between different seabed classes in a three-frequency colour sonar image of the seabed, than in a multi-frequency colour image reduced to greyscale display, or in a single-frequency greyscale image, with readily twice the number of classes of seabed discriminated between, in the colour image. The information advantage of colour acoustic imagery over greyscale acoustic imagery is analogous to the information advantage of colour television images over black-and-white television images. A three-frequency colour sonar image contains a theoretical maximum of a factor of 3 times the information in a corresponding greyscale image, for independent seabed responses at the three frequencies. Estimates of the average information per pixel (information entropy) in the colour image, and in corresponding greyscale images, reveal an actual information advantage of colour sonar imagery over greyscale, to be in practice approximately a factor of 2.5, empirically confirming the greater information based utility of three-frequency colour sonar over greyscale sonar. Reference: Tamsett, D.; McIlvenny, J.; Watts, A. J. Mar. Sci. Eng. 2016, 4(26).