“…, x 2 , x 3 , y 1 , y 2 , y 3 ] similarly to the identification of T 3 (K[x, z]) and R). Therefore we have φ ′ =ψ • µ(9) where µ stands for the K-algebra surjectionµ : F ′ → T 3 (K[x, y]) S 3 , T w → [w] for w ∈ {x, x 2 , x 3 , y, y 2 , y 3 ,xy, x 2 y, xy 2 } studied in[10] and[11]. In particular, since T 3 (K[x, y]) S 3 is known to be minimally generated by the elements [w] with w ∈ {x, x 2 , x 3 , y, y 2 , y 3 , xy, x 2 y, xy 2 }, the K-algebra homomorphisms µ and hence φ ′ are surjective onto T 3 (K[x, y]) S 3 , respectively onto P S 3 .…”