COVID-19 pathogenesis is associated with an exuberant inflammatory response. However, the tissue injury pattern and immune response in solid-organ transplant recipients (SOTRs) taking immunosuppressive therapy have not been well characterized. Here, we perform both cfDNA and cytokine profiling on plasma samples to map tissue damage, including allograft injury and delineate underlying immunopathology. We identified injuries from multiple-tissue types, including hematopoietic cells, vascular endothelium, hepatocyte, adipocyte, pancreas, kidney, heart, and lung in SOTRs with COVID-19 that correlates with disease severity. SOTRs with COVID-19 have higher plasma levels of cytokines such as IFN-λ1, IFN-γ, IL-15, IL-18 IL-1RA, IL-6, MCP-2, and TNF-α as compared to healthy controls, and the levels of GM-CSF, IL-15, IL-6, IL-8, and IL-10 were associated with disease severity in SOTRs. Strikingly, IFN-λ and IP-10 were markedly increased in SOTRs compared to immunocompetent patients with COVID-19. Correlation analyses showed a strong association between monocyte-derived cfDNA and inflammatory cytokines/chemokines in SOTRs with COVID-19. Moreover, compared to other respiratory viral infections, COVID-19 induced pronounced injury in hematopoitic, vascular endothelial and endocrine tissues. Allograft injury, measured as donor-derived cfDNA was elevated in SOTRs with COVID-19, including allografts distant from the primary site of infection. Allograft injury correlated with inflammatory cytokines and cfDNA from immune cells. Furthermore, longitudinal analysis identified a gradual decrease of cfDNA and inflammatory cytokine levels in patients with a favorable outcome. Our findings highlight distinct tissue injury and cytokine features in SOTRs with COVID-19 that correlate with disease severity.