The ability of cranial morphology to reflect population/phylogenetic history, and the degree to which it might be influenced by environmental factors and selection pressures have been widely discussed. Recent consensus views cranial morphology as largely indicative of population history in humans, with some anatomical cranial regions/measurements being more informative on population history, while others being under selection pressure. We test earlier findings using the largest and most diverse cranial dataset available as yet: 7,423 male specimens from 135 geographic human population samples represented by 33 standard craniometric linear measurements. We calculated Mahalanobis D 2 for three datasets: complete cranial dataset; facial measurement dataset; and neurocranial measurement dataset; these morphological distance matrices were then compared to matrices of geographic distances as well as of several climatic variables. Additionally, we calculated Fst values for our cranial measurements and compared the results to the expected Fst values for neutral genetic loci. Our findings support the hypothesis that cranial, and especially neurocranial morphology, is phylogenetically informative, and that aspects of the face and cranium are subject to selection related to climatic factors. The Fst analysis suggest that selection to climate is largely restricted to groups living in extremely cold environments, including Northeast Asia, North America, and Northern Europe, though each of these regions appears to have arrived at their morphology through distinct adaptive pathways. Anat Rec, 292:1720Rec, 292: -1733Rec, 292: , 2009. Key words: Fst; craniometrics; adaptation; population history; human variation; NeanderthalsThe degree to which human cranial morphology reflects population history or adaptive and developmental changes related to environmental conditions is the subject of ongoing scientific discussion in anthropology. Our understanding of the evolutionary processes affecting morphological variation directly impacts both the study of modern human geographic diversity as well as the interpretation of the human fossil record. The relevance of cranial morphology to phylogenetic reconstruction has been questioned in the past (see e.g., Collard and Wood, 2000), and convergence, parallelism, reversals, and environmen-