2023
DOI: 10.36227/techrxiv.22361863.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Multivariate Data Analysis for Motor Failure Detection and Isolation in A Multicopter UAV Using Real-Flight Attitude Signals

Abstract: <p>Reconfigurable aerial platforms such as multicopter unmanned aerial vehicles (UAVs) allow the design of fail-safe systems because of inherent redundancy in actuators and sensors to maintain stability with a reduction in flight performance. The methods based on univariate and multivariate time series analysis of just the attitude signals can pave the way for model-free systems that can be generalized across a class of UAVs like multicopters. In this paper, we present a critical analysis of real-flight … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?