2021
DOI: 10.1002/cjs.11604
|View full text |Cite
|
Sign up to set email alerts
|

Multivariate functional response low‐rank regression with an application to brain imaging data

Abstract: We propose a multivariate functional response low-rank regression model with possible high-dimensional functional responses and scalar covariates. By expanding the slope functions on a set of sieve bases, we reconstruct the basis coefficients as a matrix. To estimate these coefficients, we propose an efficient procedure using nuclear norm regularization. We also derive error bounds for our estimates and evaluate our method using simulations. We further apply our method to the Human Connectome Project neuroimag… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 34 publications
0
0
0
Order By: Relevance