IntroductionHematologic variables that are routinely measured for clinical purposes are influenced by the individual genetic constitution of the patients 1,2 : in an ethnically homogenous population, we found that 62% of the variance in white blood cell counts, 57% of that in platelet counts, and 42% of the red cell count variance were due to genetic factors. 3 The identification of the underlying genes and sequence variants will not only help to explain the variability seen between patients, but should advance our understanding of hematopoiesis in human health and disease.HMIP (HBS1L-MYB intergenic polymorphism) refers to an array of single-nucleotide polymorphisms (SNPs) situated in the interval between the gene for HBS1L (a G-protein/elongation factor) and the MYB oncogene, on chromosome 6q23.3. The physiological significance of this sequence variability was recently discovered through the investigation of persistent fetal hemoglobin synthesis in adults 4 : HMIP SNPs exist in 3 linkage disequilibrium (LD) blocks, HMIP-1, HMIP-2, and HMIP-3, and the genotype at each block influences the number of F cells and fetal hemoglobin (HbF) levels. 4 Strong LD between the SNPS within blocks permits the selection of a single tag SNP for each block: rs52090901 for HMIP-1, rs9399137 for HMIP-2, and rs6929404 for HMIP-3. The HMIP locus accounts for approximately 17% of the variation in F-cell numbers, with most of the effect contributed by the 22-kb haplotype block 2 (HMIP-2). HMIP-2 has 2 common haplotypes, designated haplotype 1 and haplotype 2. Haplotype 2, with a frequency of 0.2 to 0.25, is associated with raised F-cell levels in white Europeans. Initial functional studies have provided evidence that the locus acts through the regulation of the flanking genes, HBS1L and MYB. 4 The sequence between these genes 5 and the MYB gene product itself [6][7][8] have been shown to affect proliferation, survival, and differentiation of hematopoietic progenitor cells as well as peripheral blood cell counts in animal studies. We therefore investigated the influence of HMIP genotypes on hematologic indices in a healthy human population.
Patients and methodsOne thousand seven hundred ninety-four participants of North European ancestry including 740 same-sex dizygotic twin pairs, 114 monozygotic twin pairs, and 86 singletons from the St Thomas' Hospital Twin Register 9 were studied. HMIP genotypes and full blood counts were available for all participants, and additional differential blood count data for 1420 of them. Due to the recruitment strategy of the Twin Register, most individuals (95%) were female.