The controlling hydrogeochemical processes of an intermontane aquifer in central Mexico were identified through multivariate statistical analysis. Hierarchical cluster (HCA) and k-means clustering analyses were applied to Na+, K+, Ca2+, Mg2+, F−, Cl−, SO42−, NO3−, HCO3−, As, pH and electrical conductivity in 40 groundwater samples collected from shallow and deep wells, where As and F− are contaminants of concern. The effectiveness of each hierarchical and k-means clustering method in explaining solute concentrations within the aquifer and the co-occurrence of arsenic and fluoride was tested by comparing two datasets containing samples from 40 and 36 wells, the former including ionic balance outliers (>10%). When tested without outliers, cluster quality improved by about 5.4% for k-means and 7.3% for HCA, suggesting that HCA is more sensitive to ionic balance outliers. Both algorithms yielded similar clustering solutions in the outlier-free dataset, aligning with the k-means solution for all 40 samples, indicating that k-means was the more robust of the two methods. k-means clustering resolved fluoride and arsenic concentrations into four clusters (K1 to K4) based on variations in Na+, Ca2+, As, and F−. Cluster K2 was a Na-HCO3 water type with high concentrations of As and F. Clusters K1, K3, and K4 exhibited a Ca-HCO3, Na-Ca-HCO3, and Ca-Na-HCO3 water types, respectively, with decreasing As and F concentrations following the order K2 > K3 > K1 > K4. The weathering of evaporites and silicates and Na-Ca ion exchange with clays were the main processes controlling groundwater geochemistry. The dissolution of felsic rocks present in the aquifer fill is a likely source of As and F−, with evaporation acting as an important concentration factor.