There has been growing observational evidence for the presence of condensates in the atmospheres and/or comet-like tails of extrasolar planets. As a result, systematic and homogeneous tables of dust properties are useful in order to facilitate further observational and theoretical studies. In this paper we present calculations and analysis of non-isotropic phase functions, asymmetry parameter (mean cosine of the scattering angle), absorption and scattering opacities, single scattering albedos, equilibrium temperatures, and radiative accelerations of dust grains relevant for extrasolar planets. Our assumptions include spherical grain shape, Deirmendjian particle size distribution, and Mie theory. We consider several species: corundum/alumina, perovskite, olivines with 0% and 50% iron content, pyroxenes with 0%, 20% and 60% iron content, pure iron, carbon at two different temperatures, water ice, liquid water, and ammonia. The presented tables cover the wavelength range of 0.2 to 500 micron and modal particle radii from 0.01 micron to 100 micron. Equilibrium temperatures and radiative accelerations assume irradiation by a non-black-body source of light with temperatures from 7000K to 700K seen at solid angles from 2π to 10 −6 sr. The tables are provided to the community together with a simple code which allows for an optional, finite, angular dimension of the source of light (star) in the phase function.