Multiwavelets (MW) enable the compression, analysis and assembly of model data on a multiresolution grid withinGodunov-type solvers based on second-order discontinuous Galerkin (DG2) and first-order finite volume (FV1) methods.Multiwavelet adaptivity has been studied extensively with one-dimensional (1D) hydrodynamic models (Kesserwani et al., 2019), revealing that MWDG2 can be 20 times faster than uniform DG2 and 2 times faster than uniform FV1, while preserving the accuracy and robustness of the underlying formulation. The potential of the MWDG2 scheme has yet to be studied for two-dimensional (2D) modelling, but this requires a design that robustly and efficiently solves the 2D shallow water equations (SWE) with complex source terms and wetting and drying. This paper presents a two-dimensional MWDG2 scheme that: (1) adopts a slope-decoupled DG2 solver as a reference scheme, for its ability to deliver well-balanced piecewise-planar solutions shaped by a simplified 3-component basis; and, (2) adapts the multiresolution analysis of multiwavelets for compatibility with the slope-decoupled DG2 basis. A scaled reformulation of slope-decoupled DG2 is presented alongside two multiwavelet approaches that yield MWDG2 schemes with similar properties, and a Haar wavelet FV1 (HFV1) variant for adapting piecewise-constant model data. The performance of the adaptive HFV1 and MWDG2 solvers is explored alongside their uniform counterparts, while analysing their accuracy, efficiency, grid-coarsening ability, reliability in handling wet-dry fronts across steep bed-slopes, and ability to capture features relevant to practical hydraulic modelling. The results indicate a particular multiwavelet approach that allows the MWDG2 scheme to exploit its grid-coarsening ability for the widest range of flow types. Results also indicate that the proposed (multi)wavelet-based adaptive schemes are even more efficient for the 2D case. Accompanying model software is openly available online.