In this review, recent advances and applications using multi-way calibration protocols based on the processing of multi-dimensional chromatographic data are discussed. We first describe the various modes in which multi-way chromatographic data sets can be generated, including some important characteristics that should be taken into account for the selection of an adequate data processing model. We then discuss the different manners in which the collected instrumental data can be arranged, and the most usually applied models and algorithms for the decomposition of the data arrays. The latter activity leads to the estimation of surrogate variables (scores), useful for analyte quantitation in the presence of uncalibrated interferences, achieving the second-order advantage. Recent experimental reports based on multi-way liquid and gas chromatographic data are then reviewed. Finally, analytical figures of merit that should always accompany quantitative calibration reports are described.