Biobased polymer synthesis is becoming an indispensable research area aimed at addressing environmental pollution and the depletion of petroleum resources. Vanillin, which can be sustainably obtained from lignin biomass, is a phenolic compound that is widely used as a food additive. We herein report our study of polymer synthesis using vanillin through ring-opening metathesis polymerization (ROMP). Our initial step involves the chemical transformation of vanillin into vanillin 5-norbornene-2carboxylate (VN), a polymerizable monomer. This ROMP monomer has the capability to form poly(vanillin 5-norbornene-2-carboxylate) using a Grubbs catalyst. This glassy homopolymer has a molecular weight of 49,000 g/mol with a Đ of 1.23. To explore its potential in copolymers, we performed triblock copolymerization to create ABA-type thermoplastic elastomers. To achieve this, we synthesized three ROMP monomers serving as soft blocks, each containing different alkyl chains. Through a sequential addition of monomers (VN, soft block, and VN in that order), we successfully synthesized six vanillin-based triblock copolymers with molecular weights of 32,000−61,200 g/mol and Đ values of 1.24−1.40. These synthesized polymers exhibit excellent mechanical properties, including a Young's modulus of 28 MPa, surpassing commercial thermoplastic elastomers. Atomic force microscopy (AFM) reveals microphase separation consistent with the two distinct glass transition temperatures.