Emerging pollutants, also referred to as emerging contaminants, are substances that have recently been recognized or are gaining attention due to their potential adverse impacts on the environment, human health, or ecosystems. These pollutants present a significant threat to both environmental and human well-being and are challenging to eliminate using conventional remediation methods. Extremophiles, organisms adapted to extreme environmental conditions like high or low temperatures, high pressure, and elevated salt concentrations, play a crucial role in this context. They produce a diverse array of enzymes capable of breaking down complex organic compounds, some of which remain stable and functional even in harsh environmental conditions, making extremophiles well-suited for use in bioremediation applications. Numerous studies have demonstrated the capability of extremophiles to degrade various pollutants, including toxic solvents, heavy metals, and industrial chemicals. Halophilic archaea, a type of extremophile, have particularly shown promise in degrading emerging contaminants in salt marsh sediments. Despite their potential, there are challenges associated with using extremophiles in bioremediation, such as the limited availability of extremophilic microorganisms capable of degrading specific pollutants and a reduction in enzyme stability when operating outside their optimum range. Nevertheless, ongoing research in this field is anticipated to result in the development of new and innovative bioremediation strategies for effectively removing emerging pollutants from the environment.