Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Hydroxyapatite is an important biomedical material used in drug delivery owing to its excellent bioactivity and biocompatibility. In this study, hydroxyapatite isolated from bovine and caprine bones was capped and used as a drug carrier to encapsulate mupirocin as an active pharmaceutical product in hydrogel formulations which were utilized in wound healing application using animal model (Wistar Rats). Results Characterization of the mupirocin-encapsulated hydroxyapatite using Fourier transform infrared spectroscopy, and X-ray diffractometer revealed the active presence of mupirocin after encapsulation. The in-vitro drug release study revealed that the capped hydroxyapatite obtained from caprine bone loaded with mupirocin gave drug release rate of 84.67% of the drug within 75 min while conventional mupirocin ointment had the lowest at 27.04% within the same time. The capped hydroxyapatite obtained from bovine bone loaded with mupirocin had the highest encapsulation efficiency of 73.67%. However, the animals treated with formulation prepared from capped hydroxyapatite obtained from caprine bone loaded with mupirocin had the highest wound closure area of 377.8 mm2, while conventional mupirocin ointment had 231.5 mm2 in 16 days of treatment. All the formulations with mupirocin except the ointment showed excellent resistance against Klebsiella pneumonia and Staphylococcus aureus of about 40 mm of inhibition zone. Conclusions The mupirocin encapsulated in hydroxyapatite extracted from bovine and caprine bones has been demonstrated to be more superior to the conventional ointment in the management of chronic wound conditions.
Background Hydroxyapatite is an important biomedical material used in drug delivery owing to its excellent bioactivity and biocompatibility. In this study, hydroxyapatite isolated from bovine and caprine bones was capped and used as a drug carrier to encapsulate mupirocin as an active pharmaceutical product in hydrogel formulations which were utilized in wound healing application using animal model (Wistar Rats). Results Characterization of the mupirocin-encapsulated hydroxyapatite using Fourier transform infrared spectroscopy, and X-ray diffractometer revealed the active presence of mupirocin after encapsulation. The in-vitro drug release study revealed that the capped hydroxyapatite obtained from caprine bone loaded with mupirocin gave drug release rate of 84.67% of the drug within 75 min while conventional mupirocin ointment had the lowest at 27.04% within the same time. The capped hydroxyapatite obtained from bovine bone loaded with mupirocin had the highest encapsulation efficiency of 73.67%. However, the animals treated with formulation prepared from capped hydroxyapatite obtained from caprine bone loaded with mupirocin had the highest wound closure area of 377.8 mm2, while conventional mupirocin ointment had 231.5 mm2 in 16 days of treatment. All the formulations with mupirocin except the ointment showed excellent resistance against Klebsiella pneumonia and Staphylococcus aureus of about 40 mm of inhibition zone. Conclusions The mupirocin encapsulated in hydroxyapatite extracted from bovine and caprine bones has been demonstrated to be more superior to the conventional ointment in the management of chronic wound conditions.
Staphylococcus aureus is an important human pathogen that causes wide range of infectious conditions both in nosocomial and community settings. The Gram-positive pathogen is armed with battery of virulence factors that facilitate to establish infections in the hosts. The organism is well known for its ability to acquire resistance to various antibiotic classes. The emergence and spread of methicillin-resistant S. aureus (MRSA) strains which are often multi-drug resistant in hospitals and subsequently in community resulted in significant mortality and morbidity. The epidemiology of MRSA has been evolving since its initial outbreak which necessitates a comprehensive medical approach to tackle this pathogen. Vancomycin has been the drug of choice for years but its utility was challenged by the emergence of resistance. In the last 10 years or so, newer anti-MRSA antibiotics were approved for clinical use. However, being notorious for developing antibiotic resistance, there is a continuous need for exploring novel anti-MRSA agents from various sources including plants and evaluation of non-antibiotic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.