Choline transporter-like protein 2 (CTL2) is a multitransmembrane protein expressed on inner ear supporting cells that was discovered as a target of antibody-induced hearing loss. Its function is unknown. A 64 kDa band that consistently co-precipitates with CTL2 from inner ear extracts was identified by mass spectroscopy as cochlin. Cochlin is an abundant inner ear protein expressed as multiple isoforms. Its function is also unknown, but it is suspected to be an extracellular matrix component. Cochlin is mutated in individuals with DFNA9 hearing loss. To investigate the CTL2-cochlin interaction, antibodies were raised to a cochlin-specific peptide. The antibodies identify several cochlin polypeptides on western blots and are specific for cochlin. We show that the heterogeneity of the cochlin isoforms is caused, in part, by in vivo posttranslational modification by N-glycosylation and, in part, caused by alternative splicing. We verified that antibody to CTL2 co-immunoprecipitates cochlin from the inner ear and antibody to cochlin coimmunoprecipitates CTL2. Using cochlear crosssections, we show that CTL2 is more widely distributed than previously described, and its prominent expression on cells facing the scala media suggests a possible role in homeostasis. A prominent but previously unreported ribbon-like pattern of cochlin in the basilar membrane was demonstrated, suggesting an important role for cochlin in the structure of the basilar membrane. CTL2 and cochlin are expressed in close proximity in the inner sulcus, the spiral prominence, vessels, limbus, and spiral ligament. The possible functional significance of CTL2-cochlin interactions remains unknown.