2024
DOI: 10.3390/bioengineering11050463
|View full text |Cite
|
Sign up to set email alerts
|

MurSS: A Multi-Resolution Selective Segmentation Model for Breast Cancer

Joonho Lee,
Geongyu Lee,
Tae-Yeong Kwak
et al.

Abstract: Accurately segmenting cancer lesions is essential for effective personalized treatment and enhanced patient outcomes. We propose a multi-resolution selective segmentation (MurSS) model to accurately segment breast cancer lesions from hematoxylin and eosin (H&E) stained whole-slide images (WSIs). We used The Cancer Genome Atlas breast invasive carcinoma (BRCA) public dataset for training and validation. We used the Korea University Medical Center, Guro Hospital, BRCA dataset for the final test evaluation. M… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?