Neural regulation of a variety of gastrointestinal functions is primarily achieved by the enteric nervous system which is embedded within the gastrointestinal wall. It is usually formed from two major plexus: the myenteric plexus located between the circular and the longitudinal muscle layer and the submucosal plexus situated between the submucosa and the mucosa (for review, see Wood, 1994). In the early part of the 1970s, the first attempt to classify enteric neurones was made using extracellular recording techniques (Wood, 1970). Nishi & North (1973) and Hirst et al. (1974) then used intracellular microelectrode techniques to determine the electrophysiological characteristics of myenteric neurones in the guinea-pig small intestine. Although their classification schemes did not recover exactly the same neuronal populations, two major groups of neurones were revealed. Following the classification of Hirst et al. (1974), S neurones (for synaptically driven) and AH neurones (named after the characteristic long-lasting membrane potential hyperpolarization following the action potential) made up the two populations. Further studies by Wood and his collaborators revealed the presence of different classes of myenteric neurones depending on the region of the gut studied (Wood, 1994). Additionally, enteric neurones may be subdivided into neurochemically distinct populations (Costa et al. 1996), whose number exceeds the broadly defined electrophysiological classes. The use of intracellular injection of biocytin or neurobiotin allowed the morphology of electrophysiologically classified neurones to be determined. AH neurones were extensively studied in the ileum (for review, see Furness et al. 1998) where they were shown to have morphological characteristics of multipolar Dogiel type II neurones with most processes projecting in the circumferential direction (Iyer et al. 1988;Bornstein et al. 1991). Neuronal tracing methods showed