The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations.We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation.
KeywordsMuscle; balance; EMG; muscle synergy; motor control; biomechanics; feedback; sensorimotor integration Postural control is a fundamental motor task ideally suited for investigating questions of sensorimotor integration and redundancy. The ability to maintain posture and balance are precursors to other voluntary movements such as reaching or walking over uneven terrain. Moreover, loss of balance is a clinically important problem, as falls are a primary cause of injury and accidental death in older adults (Minino et al., 2002
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript understanding of the underlying neuromechanical principles that govern patterns of muscle activation during postural control or other basic motor behaviors.Although technological advances allow the simultaneous measurement of multiple kinematic, kinetic, and electromyographic (EMG) data channels during behavioral experiments, we lack a framework for understanding how all of these measured variables are related to the control and performance of a functional task. Without this basic understanding, we cannot begin to understand or predict how patterns of muscle activation should be altered to perform novel tasks, nor can we understand the functional impact of di...