Sarcopenia (Sp) is the loss of skeletal muscle mass associated with aging which causes an involution of muscle function and strength. Satellite cells (Sc) are myogenic stem cells, which are activated by injury or stress, and repair muscle tissue. With advancing age, there is a decrease in the efficiency of the regenerative response of Sc. Diagnosis occurs with the Sp established by direct assessments of muscle. However, the detection of biomarkers in real-time biofluids by liquid biopsy could represent a step-change in the understanding of the molecular biology and heterogeneity of Sp. A total of 13 potential proteogenomic biomarkers of Sp by their physiological and biological interaction with Sc have been previously described in the literature. Increases in the expression of GDF11, PGC-1α, Sirt1, Pax7, Pax3, Myf5, MyoD, CD34, MyoG, and activation of Notch signaling stimulate Sc activity and proliferation, which could modulate and delay Sp progression. On the contrary, intensified expression of GDF8, p16INK4a, Mrf4, and activation of the Wnt pathway would contribute to early Sp development by directly inducing reduced and/or altered Sc function, which would attenuate the restorative capacity of skeletal muscle. Additionally, tissue biopsy remains an important diagnostic tool. Proteomic profiling of aged muscle tissues has shown shifts toward protein isoforms characteristic of a fast-to-slow transition process and an elevated number of oxidized proteins. In addition, a strong association between age and plasma values of growth differentiation factor 15 (GDF-15) has been described and serpin family A member 3 (serpin A3n) was more secreted by atrophied muscle cells. The identification of these new biomarkers holds the potential to change personalized medicine because it could predict in real time the course of Sp by monitoring its evolution and assessing responses to potential therapeutic strategies.