Skeletal muscle dysfunction is a well-recognised hallmark of chronic obstructive pulmonary disease (COPD) leading to exercise intolerance. The vastus lateralis of COPD patients is characterised by reduced mitochondrial enzyme activity; however, this is not the case in the tibialis anterior. It is, however, unclear whether the compromised oxidative capacity in the vastus is due to reduced mitochondrial volume density. Muscle biopsies were obtained from the vastus lateralis of six COPD patients and four healthy age-matched controls, and from the tibialis anterior of another six COPD patients and six controls. Mitochondrial number, fractional area and morphometry, as well as Z-line width (as a surrogate marker of fibre type), were analysed using transmission electron microscopy. Mitochondrial number (0.34 versus 0.63 n.microm(-2)) and fractional area (1.95 versus 4.25%) were reduced in the vastus of COPD patients compared with controls. Despite a reduced mitochondrial number (0.65 versus 0.88 n.microm(-2)), the mitochondrial fractional area was maintained in the tibialis of COPD patients compared with controls. It can be concluded that the reduced mitochondrial fractional area is likely to contribute to the decreased oxidative capacity in the vastus of chronic obstructive pulmonary disease patients, whereas the maintained mitochondrial fractional area in the tibialis may explain the normal oxidative capacity.