Rheumatoid arthritis is characterised by a progressive, intermittent inflammation at the synovial membrane, which ultimately leads to the destruction of the synovial joint. The synovial membrane, which is the joint capsule's inner layer, is lined with fibroblast-like synoviocytes that are the key player supporting persistent arthritis leading to bone erosion and cartilage destruction. While microfluidic models that model molecular aspects of bone erosion between bone-derived cells and synoviocytes have been established, the synovial-chondral axis in rheumatoid arthritis has yet not been realised using a microfluidic 3D model based on human patient in vitro cultures. Consequently, we established a chip-based three-dimensional tissue co-culture model that simulates the reciprocal cross-talk between individual synovial and chondral organoids. We now demonstrate that chondral organoids, when co-cultivated with synovial organoids, induce a higher degree of physiological cartilage architecture and show differential cytokine response compared to their respective monocultures highlighting the importance of reciprocal tissue-level cross-talk in the modelling of arthritic diseases.